Timeline

The History of Mathematics Education

Year	Event
1800s	Elementary school mathematics consisted of arithmetic with whole numbers, decimals, and
	percents. Also included work with length, area, and volume. Math was considered a mental
	discipline and the teacher demonstrated and students used oral recitation to memorize their
	work. (Senk & Thompson, pg. 5)
1845	Horace Mann found the current levels of arithmetic discouraging and called for reform with
	more emphasis on teaching thinking. (Senk & Thompson, pg. 5)
1890	The beginnings of vocational and commercial high schools to better prepare students of
	occupations including work with algebra and geometry. (Senk & Thompson, pg. 6)
1890s	Creation of the Committee of Ten to research and report on curriculum for secondary schools.
	The Committee of Ten found both elementary and secondary schools to be "inadequate."
	(Senk & Thompson, pg. 6)
1900	Most students attended school until age 13 and less than 7% of 17 year olds went to high
	school. (Senk & Thompson, pg. 5)
1922	Textbooks starting considering the sequencing of tasks and to build on one another. Number
	facts and computation were at the core of the current curriculum. (Senk & Thompson, pg. 7)
1927-	Judd advocated that math is a general way of thinking and that the goal of mathematics
1928	education should be to "develop student' abilities to think. Changed the focus of teaching to a
	student-centered model. (Senk & Thompson, pg. 7)
1940s	Testing of recruits for WW II found "that many youths and young adults were ill prepared in
	mathematics" which was important for the engineering and technical support aspects of the
	war. (Senk & Thompson, pg. 7)
1958–	University of Illinois Committee on School Mathematics (UICSM) created mathematics
1959	textbooks with a focus on readying students for engineering and science programs in college.
	School Mathematics Study Group (SMSG) created materials geared for the top of each grade
	level. (Senk & Thompson, pg. 8)
1957-	New Math was introduced incorporating geometry and graphs into elementary curriculums and
1970	inequalities, solid geometry and trig for high school curriculums. The director of SMSG
	commented:
	'The chief difference between and old and new programs is the point of view toward
	mathematics. No longer is computational skill the be-all and end-all of mathematics. Now
	there is an equal emphasis on understanding the basic concepts of mathematics and of their
	interrelationships i.e., the structure of mathematics.' (Senk & Thompson, pg. 8)
1969-	National Assessment of Education Progress (NAEP) created. First tests given in 1972 to
1972	establish a baseline but levels were still quite low. (Senk & Thompson, pg. 9)
1977	The National Council of Supervisors of Mathematics (NCSM) broadening the term "basic
	skills" to include: problem solving, applying mathematics, number sense, geometry, and data
	analysis. (Senk & Thompson, pg. 9)
1980	The National Council of Teachers of Mathematics (NCTM) releases An Agenda for Action
	stating the fundamental goal of school mathematics should be problem solving. (Senk &
	Thompson, pg. 9)

1983	A call for increased requirements for all high school mathematics. Asking for equally
	challenging courses for both college prep and non-college prep tracks. (Senk & Thompson, pg.
	10)
1987	McKnight and his colleagues find that in no test administered by the Second International
	Mathematics Study (SIMS) did U.S. score above the international average and in many cases
	actually scored significantly below. (Senk & Thompson, pg. 10)
1989	NCTM releases Curriculum and Evaluation Standards for School Mathematics supporting that
	all students need strong math skills. (Senk & Thompson, pg. 11)
1991	NCTM releases Professional Standards for Teaching Mathematics giving tools for teaching,
	evaluating teaching, and professional development for math teachers. (Senk & Thompson, pg.
	11)
1995	NCTM releases Assessment Standards for School Mathematics showing multiple uses for
	assessing including progress monitoring, guiding instruction, evaluating student achievement
	and evaluating programs. Introduction of performance tasks into assessments. (Senk &
	Thompson, pg. 11)
1992-	National Science Foundation (NSF) holds annual conferences for development of instructional
1998	materials to support the NCTM standards. (Senk & Thompson, pg. 14)
1999-	Many disagreements started regarding the reform the mathematics curriculum including
2000	parents protesting fearing that their students would not be academically competitive with the
	new curriculums. (Senk & Thompson, pg. 16)
1999	Glenda Lappan, president of NCTM in 1999, adovcates: "We've had the longest running
	experiment in human history about whether rote memorization of facts and skills works. And
	it doesn't. Students are coming to universities and into the workplace not understanding math.
	Why wouldn't I want to try something new?" (Senk & Thompson, pg. 16)
2000	300,000 students in high school and over 3 million elementary and middle school students
	were using materials supported by NSF funds. (Senk & Thompson, pg. 15)